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Summary

Accurate genetic and physical maps for the human pseu-
doautosomal region were constructed by use of sperm
typing and high-resolution radiation-hybrid mapping.
PCR analysis of 1,912 sperm was done with a manual,
single-sperm isolation method. Data on four donors
show highly significant linkage heterogeneity among in-
dividuals. The most significant difference was observed
in a marker interval located in the middle of the Xp/Yp
pseudoautosomal region, where one donor showed a
particularly high recombination fraction. Longitudinal
models were fitted to the data to test whether linkage
heterogeneity among donors was significant for multiple
intervals across the region. The results indicated that
increased recombination in particular individuals and
regions is compensated for by reduced recombination in
neighboring intervals. To investigate correspondence be-
tween physical and genetic distances within the region,
we constructed a high-resolution radiation-hybrid map
containing 29 markers. The recombination fraction per
unit of physical distance varies between regions ranging
from 13- to 70-fold greater than the genome-average
rate.

Introduction

Human sex chromosomes recombine in the pseudoau-
tosomal regions (PARs) located at the tips of the short
and long arms of the X and Y chromosomes. A 50%
recombination fraction in the Xp/Yp PAR (PAR1) sug-
gested an obligatory crossover between the X and Y
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chromosomes during male meiosis (Burgoyne et al.
1982; Rouyer et al. 1986; Page et al. 1987). Absence of
double recombinants in earlier studies suggested that
only one recombination could occur in the human PAR1
(Rouyer et al. 1986), but later studies have reported a
few double recombinants in the region (Rappold et al.
1994; Schmitt et al. 1994). The physical length of PAR1
is estimated to be 2.6 Mb by pulse field gel electropho-
resis (PFGE) (Brown 1988; Petit et al. 1988; Rappold
and Lehrach 1988). Efforts have also been made to cover
PAR1 by yeast artificial chromosome (YAC) contigs
(Slim et al. 1993a; Ried et al. 1995), but, owing to YAC
instability, gaps may remain in the middle part of the
region (Ried et al. 1995).

Although recombination plays a central role in ge-
netics, much remains to be learned about its rate, pat-
tern, and regulation in higher eukaryotes (Brooks 1988).
Haldane (1922) was the first to suggest that some regions
in the genome undergo recombination more frequently
in the germ cells of one sex than the other. Since then,
sex-specific differences in recombination have been well
characterized in many organisms, including humans and
mice (Donis-Keller et al. 1987; Roderick and Hillyard
1990; Broman et al. 1998), and recombination fractions
are sometimes modeled separately for males and females.
Likewise, within-sex variation of recombination has
been proposed on the basis of bivalent chiasma fre-
quencies observed in cytogenetic studies (Laurie and
Hulten 1985). Recently, Broman et al. (1998) analyzed
maternal haplotypes among the children of eight CEPH
family mothers and showed that the total number of
recombination events per gamete varied. Similar analysis
of eight paternal haplotypes showed no differences. Data
from several mammalian species show that recombina-
tion fractions per unit of physical distance vary between
and along chromosomes. For example, telomeric regions
are usually more recombinogenic than the rest of the
chromosome (Donis-Keller et al. 1987; Nachman and
Churchill 1996; Broman et al. 1998; Mohrenweiser et
al. 1998). Hot spots of recombination (reviewed in Lich-
ten and Goldman 1995; Robinson 1996) have been well
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characterized in some species, but only limited infor-
mation is available in mice (see Reeves et al. 1990; Bryda
et al. 1992; Shirioshi et al. 1995), and very little is known
about them in humans. Obviously, our understanding
of recombination patterns in molecular terms will re-
quire very-high-resolution data, both at the physical and
genetic levels, so that these patterns can eventually be
defined in terms of DNA sequence and chromatin struc-
ture. Considering the growing databases of physical-
mapping information in humans, the availability of ac-
curate high-resolution recombination data is the limiting
factor for comparison of physical and genetic infor-
mation. The current maps provide an estimate of the
recombination fraction averaged across all families stud-
ied, but chromosome regions that exhibit unusual re-
combination properties only in some individuals may
not be identified.

Because of an almost unlimited number of sperm or
meioses available from any male, sperm typing (Li et al.
1988) offers an opportunity to study recombination in
single individuals. Recent sperm-typing experiments
have shown evidence for individual variation in recom-
bination in the chromosome region containing the major
histocompatibility complex (MHC) of humans (Yu et al.
1996) and cattle (Park et al. 1995; Simianer et al. 1997),
and the bovine PAR (Simianer et al. 1997). In regions
with accurate physical maps, sperm typing also has the
potential to dissect mammalian recombination hot spots
to the point where DNA sequence analysis may reveal
the molecular basis of hyperrecombination (Hubert et
al. 1994). Recently, evidence for recombination heter-
ogeneity adjacent to minisatellite sequences has been ob-
served among individuals (Jeffrey et al. 1998).

In this study, we have applied sperm typing to test for
individual variation of the recombination fraction in the
human PAR. Furthermore, the construction of a high-
resolution radiation hybrid (RH) map for PAR1 allowed
the correspondence between physical and genetic dis-
tances within the region to be investigated.

Material and Methods

Donors and Markers

Among 43 donors genotyped for pseudoautosomal
markers, 4 individuals with the greatest levels of het-
erozygosity for markers in the PAR were selected for
single-sperm typing. The 4 individuals, all white, age
42–48 years, were heterozygous for a polymorphism
(TEL) adjacent to the Xp/Yp telomere (Baird et al. 1995).
Two sperm samples were analyzed for one of the donors
at ages 47 and 48 years. Altogether, 1,912 single sperm
were studied, and the number of sperm per donor had
a range of 435–547.

Ten markers in PAR1, one marker in PAR2 (Xq/Yq),

and five sex-specific loci were included in the study (table
1). The markers covered PAR1 almost completely, be-
cause one of the polymorphisms (TEL) is located only
652 bp from the Xp/Yp telomere repeat array (Baird et
al. 1995).

Sperm Typing

Sorting and lysis of single sperm cells followed the
method described by Lien et al. (1993) with minor mod-
ifications. The low-melting-point agarose containing the
sperm was dried for 20 min at 37�C or until the agarose
took on a “sticky” quality. Pieces of agarose, each con-
taining a single sperm, were picked by using a thin scal-
pel blade close to the border where the agarose had not
completely dried out. Agarose pieces were picked up by
the tip on the side of the blade and transferred to 200-
ml PCR tubes containing lysis buffer. DNA from single
sperm was amplified by two rounds of PCR. The first
was done with primer pairs for 16 loci. The final reaction
contained: 5.0 ml lysis buffer (200 mM KOH, 50 mM
DTT), 5.0 ml neutralization buffer (900 mM Tris-HCl,
pH 8.3, 300 mM KCl, 200 mM HCl), 5.0 ml 10 # PCR
buffer (100 mM Tris-HCl, pH = 8.3, 25 mM MgCl,
0.01% [weight/volume] gelatin), 0.15 mM each dNTP,
2.0 pmol each primer (table 1), 0.5 U Taq polymerase,
and H2O in a total volume of 50 ml. The PCR protocol
was initiated with 3 min at 94�C, 2 min at 55�C, and 1
min at 72�C for cycle 1, followed by 15 s at 95�C, 1
min at 55�C, and 1 min at 72�C for cycles 2–5, and 15
s at 95�C, 30 s at 55�C, 30 s at 72�C for the last 35
cycles.

The products from the first round of PCR were ream-
plified in 16 separate locus-specific PCR reactions. The
reactions were done in 10 mM Tris-HCl, pH 8.3, 50
mM KCl, 2.5 mM MgCl, and 0.001% (weight/volume)
gelatin, with the addition of 0.2 mM of each dNTP, 10.0
pmol of each primer, 0.5 U Taq polymerase, 1.5 ml prod-
uct from the first round of PCR, and H2O in a total
volume of 25 ml. The PCR protocol included 3 min at
94�C, followed by 15 s at 95�C, 30 s at 58�C, or 62�C,
and 30 min at 72�C for 35 cycles. Primers and annealing
temperatures for specific loci are given in table 1.

Scoring of alleles for TEL and DXYS15 and ZFX/
ZFY was as previously described (Chong et al. 1993;
Schmitt et al. 1994; Baird et al. 1995). Other markers
in the study were di- or tetra-nucleotide repeats with an
allele-length difference of �4 bp in the four selected
donors. Genotypes were determined by electrophoresis
in 3%–4% agarose gels and ethidium-bromide (EtBr)
staining.

Multipoint Linkage Analysis

Marker order was established by multipoint linkage
analysis by using a sperm-typing version of the MEN-
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Table 1

Oligonucleotide Primers

Locus Sequence (5′r3′) PCR 1 PCR 2a

TEL (Baird et al. 1995) AGGGACCGGGACAAATAGAC �
CCAGACACACTAGGACCCTGAG � �58

TTGAAGTCCCCCCTGTGTAG �58

DXYS201 (Rappold et al. 1994) ACGGACACAGAAATCCTTC � �58

TGTGATCCAATTTGCTAACA � �58

DXYS15 (Schmitt et al. 1994) TATTTATGGAAATTGCCCCC �
TAATACAAGCCAGACGAGCC � �62

CACACATCACTGGAAATAGACTG �62

DXYS233 (Dib et al. 1996) TTGGGAATTCGAGGCTGGA �
TTGATTTCCATCCTGGGGTT �
TGGGAAGACCCCCATCTCTG �62

TCACGGCTCACAGCAGACTC �62

DXYS218 (Murray et al. 1994) TGTGTTTGGGTTTCCTCTGTC �
AGCGAAACTCCGTCTCAAAATA � �62

AACTGAGGGGACCTGGAATG �62

GGAT3F08 (Murray et al. 1994) TTTTCCAGAAGCTCAGATCC � �58

CTGGGCAATGGAGTGAGAC �
TATCCATCCATCCATCAACC �58

DXYS234 (Dib et al. 1996) CCTAGCCTGGGCAGCAAG � �62

CTGAGGCGGGTCCCACAT �
TTCCTGTTCCCCATCTCCA �62

DXYS85 (Schmitt et al. 1994) ACCACAGGGCCTATCGTG �
TTTGCTGAGCACCTAGAAGG � �58

TAGGTCCTCTAGGTGCAGGA �58

DXYS228 (Dib et al. 1996) CCGGTCCCAACTATTAGCAGT � �62

TTTACGTGGGAGCAATAGTTCA �
GTAATTAACAAACCGAGCTGTTA �62

MIC2 (Schmitt et al. 1994) CAAATGCAGCTGATAAAA � �58

AGAGCTTCCTGTTTCTCC � �58

AFM319yg5 (Dib et al. 1996) ACCTCGTGAAAGACCCAATC �
ATCACTAACTTGAGAGGTCCTATGT � �62

ATCATCCTTGCTCCCTAGAAC �62

AFMa082zh1 (Dib et al. 1996) TCTGGGTGGATTGTGGAATAA �
GGTTGCTGCAAATGCCATTA � �58

GCCATCAATCAACAGGTTGGT �58

AMG (Schaaff et al. 1996) CTTCCCAGTTTAAGCTCTGATG �
CCTTGCTCATATTATACTTGAC �
CTGAGGGAGGTTCCATGA �58

TGAGAAAACCAGGGTTCC �58

STS (Schmitt et al. 1994) GAGTGAAACTCACTCAGCAC � �62

CCTTAGGAACCAGGAGATAC �
TGGGAGACTGTCCCGAAGGT �62

ACCGTACTTGCATGAGAAGCTGTCCCAAAGGA �62

ZFX/ZFY (Chong et al. 1993) ACCA/GCTGTACTGACTGTGATTACAC �
GCACC/TTCTTTGGTATCC/TGAGAAAGT �
AC/TAACCACCTGGAGAGCCACAAGCT �58

TGCAGACCTATATTCA/GCAGTACTGGCA �58

DXYS154 (Schmitt et al. 1994) GCTTCGGCCTCCCAAAGT �
ATGAAATTATCTGTTTGCTGATGAC � �62

GGCCTGAATTCATTTATTATTCTAATAG �62

a �58 and �62 denote primer combinations with annealing temperatures at 58�C and 62�C, respectively.

DEL linkage-analysis program (Lazzeroni et al. 1994).
This program calculates recombination fractions and
corresponding standard errors for adjacent loci by use
of all data from all individuals simultaneously. Support
for a given order was expressed by computing log10 (LA/
LB), where LA = maximum likelihood of the best-sup-

ported order and LB = maximum likelihood for a given
locus order.

RH Mapping

The protocol for TNG RH panel screening was gen-
erally as described by the manufacturer (Research Ge-



560 Am. J. Hum. Genet. 66:557–566, 2000

Table 2

Parameterization of Logistic-Regression Models

Model
Number b′ Model Parameterization

1N (b1 b2 b3 b4) Separate parameter for each donor
2N (b12 b12 b3 b4) Common parameter for A and B
3N (b13 b2 b13 b4) Common parameter for A and C
4N (b14 b2 b3 b14) Common parameter for A and D
5N (b1 b23 b23 b4) Common parameter for B and C
6N (b1 b24 b3 b24) Common parameter for B and D
7N (b1 b2 b34 b34) Common parameter for C and D
8N (b124 b124 b3 b124) Common parameter for A, B, and D
9N (b b b b) Common parameter for all donors

netics). Data were analyzed by using the RHMAP sta-
tistical package for multipoint RH mapping (Lange et
al. 1995). The RH map was constructed by using the
left-endpoint retention probability model under the mul-
tilocus ordering option of the program.

Testing the Variability of Recombination Fractions in
Single Intervals

The heterogeneity of individual recombination frac-
tions was first assessed separately for each of four
marker intervals located within the PAR and the interval
AFM319yg5-DXYS154 bracketing the region between
PAR1 and PAR2. The Morton test (Morton 1956) was
applied to test the variability of recombination fractions
among donors, as described by Simianer et al. (1997).
In addition to P values on the basis of the x2 distribution,
empirical P values were obtained by permuting sperm-
recombination status (i.e., recombinant or nonrecom-
binant) across donors 2,000 times (Churchill and Doerge
1994).

Another approach for testing the variability of recom-
bination fractions was based on fitting various logistic-
regression models. A series of null hypotheses of the
form: H0, , was assessed by comparing pa-(b � b ) = 0′m m

rameter estimates (b) from two logistic-regression mod-
els by using the Wald test: ′ �1W = (b � b ) V (b �′m m m m

, where is the inverse of the variance-covariance�1b ) V′m m

matrix of b, and subscripts m and m′ refer, respectively,
to a less- and a more-parsimonious model. The asymp-
totic distribution of the Wald test follows the x2 distri-
bution with df equal to the rank of Vm. The parame-
terization of vector b applied in different models is
summarized in table 2.

Testing the Variability of Recombination Fraction
across the Chromosome

To test whether the individual heterogeneity of recom-
bination can be attributed to the chromosome as a
whole, data from multiple intervals were analyzed to-
gether, by fitting logistic-regression models to the data
from five marker intervals simultaneously. For fitted
models, parameterization of donor effects was the same
as that shown in table 2, but, in addition to donor effects,
interval effects were also included. An important feature
of the model was the assumed correlation between in-
tervals located in the same sperm cell, meaning that a
recombination status in one interval depends on a re-
combination status in other intervals. This is a longi-
tudinal model for correlated binary data. Parameters
were estimated on the basis of the generalized estimating
equations (GEE) approach (Liang and Zeger 1986), as-
suming unstructured (co)variance of interval recombi-
nation status, common to all donors.

Results

Genetic Map

A multipoint linkage map was constructed on the ba-
sis of the genotype of 1,912 single sperm cells. The com-
plete data set is available (see Electronic-Database In-
formation). This map—flanked by a polymorphism
(TEL), located only 652 bp from the Xp/Yp telomere
repeat array (Baird et al. 1995), and DXYS154, located
within the Xq/Yq PAR (PAR2)—defines a total length
of 56.0 cM. The most-likely order of markers with in-
dividual recombination fractions for the four donors is
presented in figure 1. The odds against the second-most-
likely order, in which the closely linked markers
DXYS228 and MIC2 were reversed, was 101.6561:1 ≈ 45:
1. Two markers, AFM319yg5 (DXYS230) and
AFMa082zh1 (DXYS229), previously localized to PAR1
(Dib et al. 1996), were mapped to the sex-specific part
of X/Y. This location is supported by RH results (this
study) and YAC contigs covering region Xp22.3–
Xp21.3 (Ferrero et al. 1995). The overall efficiency of
locus amplification in the sperm-typing experiment is
high and varies from .899 to .972 for the 16 loci. Es-
timates of the probability of having one or zero sperm
in the tube were .962 and .037, respectively, whereas
the probability of picking more than one sperm was on
the order of 1#10�5. The nonspecific contamination
rate per locus and sperm cell was .0030.

Double Recombinants

The analysis of 1,912 single sperm detected only 21
double recombinants for a segment with 0.56 cM genetic
length, reflecting strong genetic interference. The double-
crossover intervals were distributed throughout PAR1 as
would be expected from a random process. By using a
Poisson distribution of crossovers in 11 short marker
intervals, and assuming that the number of crossovers
is equivalent to the number of recombination events, we
calculated the probability for two crossing-over events
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Figure 1 Male genetic map and individual recombination fractions (donors A–D) for five marker intervals on the human X/Y-chromosome.

to be .092331, or 177 among 1,912 sperm. Calculations
made by using 2-point estimates of the recombination
fractions from five larger intervals (fig. 1) yielded a sim-
ilar probability: .076250, or 146 double-recombinant
sperm. In 4 of the 21 double-crossover sperm cells, the
two events were observed in neighboring intervals.
When 11 marker intervals and the donor-average esti-
mates of the recombination fractions are considered, the
probability of recombination in any 2 neighboring in-
tervals is .019245. Thus, among 1,912 sperm, we would
expect ∼37 (exactly 36.80) neighboring recombinants
just by chance, which is more than eight times as many
as the four observed events. All four were confirmed by
retyping the first-round PCR product. Genotyping errors
that produce single alleles in phase opposite to that of
alleles from adjacent markers are suggested as the major
source for false double recombinations in dense genetic
maps (Buetow 1991; Broman et al. 1998). Analogously,
contamination of the initial multiplex PCR reaction
could account for these adjacent double crossovers. It is
also possible that they result from a single recombination
that was resolved to yield a gene-conversion event with-
out flanking-marker exchange. The rest of the double
recombinants were separated by at least two markers
and are not likely to be the result of two independent
genotyping errors.

Linkage Heterogeneity among Donors

Results from the Morton test (Morton 1956) for in-
dividual variability of recombination are presented in
table 3. Two regions with significant linkage heteroge-
neity were detected. The most significant linkage het-
erogeneity among donors was observed for interval
DXYS218–GGAT3F08 ( ). Variability in theP ! .00001
recombination fraction for single intervals was also
tested by comparisons of logistic regression models with
the Wald test (table 4). The results from this test are
very similar to the results from the Morton test. The
Wald test shows that linkage heterogeneity among do-
nors in interval DXYS218–GGAT3F08 is caused by a
more than two-fold increase in the recombination frac-
tion in donor C, compared to the other individuals in
the study. Fitting longitudinal models allows for simul-
taneous testing of linkage heterogeneity among donors
in multiple intervals across the whole PAR1. This anal-
ysis produces no significant result (table 4), which in-
dicates that donor C compensates for the higher recom-
bination in interval DXYS218–GGAT3F08 with lower
recombination elsewhere in the PAR1 (fig. 1).

Multiple sperm samples taken at two different ages
were available for donor D. The comparison of recom-
bination fractions at age 47 years (280 sperm) and age
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Table 3

Morton Test for Linkage Heterogeneity among Donors at the X/Y
Chromosome

Marker Interval n v Z Pt Pe

TEL-DXYS15 1618 .12361 224.22 .0662 .0745
DXYS15-DXYS218 1727 .04169 389.91 .0585 .0735
DXYS218-GGAT3F08 1721 .12435 237.42 !.00001 !.00001
GGAT3F08-AFM319yg5 1714 .23221 112.57 .3712 .3690
AFM319yg5-DXYS154 1710 .00760 481.59 .0037 .0040

NOTE.—Number of informative sperm (n), 2-point maximum-likelihood esti-
mates of the recombination fraction (v), with corresponding LOD score (Z), and
type I–error probabilities for the Morton test on individual variability of the
recombination fraction based on the x2 distribution (Pt) and permutation (Pe),
for the five marker intervals on the X/Y chromosome.

48 years (267 sperm) for this donor revealed no signif-
icant differences for the 5-marker intervals shown in
figure 1.

Physical Map

An RH map (table 5), including 29 markers from
PAR1, was constructed by using the RHMAP statistical
package for multipoint RH mapping (Lange et al. 1995).
Proximal markers in the map are TEL located only 652
bp from to the Xp/Yp telomere repeat array (Baird et
al. 1995) and DXYS77 (Schmitt et al. 1993) located ∼14
kb from the PA boundary (Fisher et al. 1990). Another
well-characterized locus located close to the PA bound-
ary is MIC2. The gene is reported to be 52 kb in size
(Smith et al. 1993) and maps 80 kb (Petit et al. 1988)–95
kb (Smith et al. 1993) from the PA-boundary and ∼2,550
kb from Xptel (Petit et al. 1988). Comparing the distance
of 2,550 kb with the RH map (707.7 cR), we obtain an
average of 3.6 kb per 1% breakage for the human PAR1.
This is similar to the genome average of 4 kb per 1%
of X-ray breakage estimated for the TNG panel (Beasley
et al. 1997). Five other markers included in the RH map
have previously been mapped by PFGE (Petit et al. 1988;
Rappold et al. 1992; Slim et al. 1993b). The physical
distances per 1% of X-ray breakage for intervals con-
taining these five markers vary from 3.2 kb, in interval
DXYS17–MIC2, to 5.2 kb, in interval DXYS201–
DXYS15.

Recombination per Unit of Physical Distance

On the basis of our data, recombination per unit of
physical distance for the whole PAR1 is ∼20-fold higher
that the genome-average rate of 1 cM/Mb. The recom-
bination fraction per unit of physical distance seems to
be variable within different regions of the PAR1 (table
5). The most recombinant regions per unit of physical
distance are (1) between DXYS201 and GGAT3F08, and
(2) close to the PA-boundary, with a 26–38-fold increase

in recombination compared to the genome average. Less
recombination is observed in the region telomeric to
DXYS201 and between markers GGAT3F04 and MIC2,
with increases in recombination 13–23 times the ge-
nome-average rate.

Discussion

Linkage Heterogeneity among Donors

In humans, cytogenetic studies of bivalent chiasma
frequencies have suggested individual variation among
men in the position of crossovers (Laurie and Hulten
1985). Individual variation has also been inferred from
limited human-family data supporting linkage hetero-
geneity on the basis of allele-specific effects on recom-
bination between the markers Gm and alpha-1-anti-
trypsin (Gedde-Dahl et al. 1972; Weitkamp et al. 1978;
Babron et al. 1990). Studies on the telomeric region of
chromosome 4p have suggested that recombination may
be suppressed in individuals carrying the HD mutation
when compared to non-HD individuals (Buetow et al.
1991; MacDonald et al. 1989). Finally, sperm-typing
analysis of recombination between the markers D6S291
and D6S109, which encompass the HLA region in single
individuals, provided direct meiotic data on individual
variation in the recombination fraction (Yu et al. 1996).
A statistically significant difference was detected among
five donors (range of recombination fractions 5.1%–
11.2%). Our results on the human PAR1 also show link-
age heterogeneity among donors. The most signifi-
cant result was found for the interval DXYS218–
GGAT3F08, where donor C has a more than two-fold
increase in recombination fraction compared to the
other individuals in the study ( ). This varia-P ! .00001
tion could reflect polymorphisms in genes affecting re-
combination or differences in chromosome structure. Be-
cause the donors were of a comparable age, this variable
can be excluded as contributory.
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Table 4

Wald Test for Linkage Heterogeneity among Donors at the X/Y Chromosome

MARKER

INTERVAL

MODELS

1N–9N 1N–2N 1N–3N 1N–4N 1N–5N 1N–6N 1N–7N 1N–8N

TEL-DXYS15 .0694 .3549 .1803 .9850 .9708 .5322 .2988 .3135
DXYS15-DXYS218 .0599 .9281 .1686 .2277 .4361 .5612 .9917 .2252
DXYS218-GGAT3F08 !.00001 �1.0000 .0004 .8337 .0002 .8363 .0039 .7516
GGAT3F08-AFM319yg5 .3822 .9969 .5748 .9983 .6887 .9805 .4418 .9805
Multiple intervalsa .8996 .9559 �1.0000 .9999 .9509 .9911 �1.0000 .9409

NOTE.—Parameterization of donor effects 1 N–9 N are the same as in table 2. Type I error probabilities for the
Wald test on individual variability of the recombination fraction are based on the x2 distribution.

a Simultaneously testing of intervals TEL-DXYS15, DXYS15-DXYS218, DXYS218-GGAT3F08, GGAT3F08-
AFM319yg5, and AFM319yg5-DXYS1.

Pseudoautosomal Interference

Although linkage heterogeneity was detected in spe-
cific intervals, no significant heterogeneity among donors
was detected when analyzing recombination throughout
the XY pairing region (table 4). We conclude that donor
C seems to compensate for the higher recombination in
interval DXYS218–GGAT3F08 with a lower recombi-
nation in flanking intervals. This is in accordance with
a strong positive linkage interference within the region
and supports the old idea that the short physical distance
reduces double recombination within human PAR1 dur-
ing male meiosis (Rouyer et al. 1986). We detected ∼1%
double recombinants in the PAR1, in an interval of no
more than 3 Mb. The fact that we detected so many
double crossovers in PAR1 is in itself surprising. This
raises the question of how the mechanism of interference
works on both the scale of whole chromosomes
(∼50–250 Mb), where crossovers are restricted to be-
tween one and three, and in the ∼2.6-Mb PAR1 (see
Collins et al. 1996; Broman et al. 1998).

Physical Map of the PAR

Several YAC contigs that span the PAR have been
characterized (Slim et al. 1993a; Ried et al. 1995). De-
spite intensive efforts to cover the whole PAR1, high
levels of YAC instability have made this work very dif-
ficult, and gaps may remain in the middle part of the
region (Ried et al. 1995). An alternative physical-map-
ping strategy to YACs is RH mapping facilitated by the
development of a high-resolution (TNG) mapping panel
(Beasley et al. 1997). Our high resolution RH map for
PAR1 (table 5), fits very well with previously published
cosmid contigs covering the first 700 kb of Xptel (Rao
et al. 1997) and with PFGE results on the whole region
(Petit et al. 1988; Rappold et al. 1992; Schiebel et al.
1993). However, discrepancies in locus order are found
when comparing the RH map with YAC contigs for the
middle part of PAR1. On the basis of the RH mapping,
the location of markers DXYS141, DXYS234, and

DXYS138 are between ANT3 and DXYS85. This is in
conflict with YAC contigs generated for the region (Slim
et al. 1993a; Ried et al. 1995) but agrees with linkage
data in this study. Also the positions of DXYS85 and
DXYS17 in the RH map are different from previous
reports (Slim et al. 1993a; Ried et al. 1995). Recently,
Ried et al. (1998) showed that, as a result of gene du-
plications, some DNA sequences exist at both 800–1000
kb and 1800–2100 kb from the Xptel. This may at least
partly explain discrepancies in results obtained by dif-
ferent physical-mapping methods.

Comparison between the Physical and Genetic Maps

Currently available genetic maps, although dense in
markers, are relatively low in resolution; the individual
genetic distances between closely linked markers have
wide confidence intervals. The construction of a high-
resolution genetic map and an overlapping RH map al-
lows us to make a more accurate comparison between
physical and genetic distances in PAR1. A 50% recom-
bination fraction within 2.6 Mb of the human PAR1
implies recombination per unit of physical distance at
∼20 times the genome average. The sperm-typing results
in this study confirm this highly elevated recombination
fraction for the whole PAR1 but show that recombi-
nation per unit of physical distance varies considerably
within the region (table 5). The highest recombination
fraction per Mb is found for interval DXYS201–
GGAT3F04 and the interval adjacent to the PA-bound-
ary (table 5). Our results for this latter interval are con-
sistent with the data of Schmitt et al. (1994), who es-
timated recombination in this region to be 31-fold higher
than the genome average. Similarly, highly elevated re-
combination per unit of physical distance was detected
between DXYS201 and GGAT3F08 located 468–1162
kb from the Xptel. This region contains the 331-kb
marker interval DXYS218–GGAT3F08 where we also
observe linkage heterogeneity among donors. Assuming
no major rearrangements or duplications in the region,
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Table 5

RH Map and Correspondence between Physical and Genetic Distances in the
Human PAR1

PHYSICAL MAP
GENETIC

MAPd

(cM)

RECOMBINATION

PER PHYSICAL UNIT

MARKERSa

RH Map
(cR) ∼kbb PFGEc cM/∼kbb Increasee

TEL .0 0 0
DXYS14 .7
DXYS129 36.9 7.2/468 15-fold
DXYS60 58.8
DXYS153 95.4
DXYS201 117.0 468 450 7.2
DXYS131 139.3
DXYS136 163.1 6.3/231 27-fold
DXYS15 174.7 699 750 13.5
DXYS233 183.5 4.2/132 32-fold
DXYS218 207.8 831 17.7
DXYS137 222.8
DXYS91 231.4 12.5/331 38-fold
GGAT3F08 290.4 1162 30.2
CSF2RA 317.9 1272 1200–1300
ANT3 340.3 1361 1300 9.8/435 23-fold
DXYS141 371.9
DXYS234 399.2 1597 40.0
DXYS138 406.4 4.3/253 17-fold
DXYS85 462.5 1850 44.3
DXYS17 519.4 2077 1900–2000
DXYS145 521.6
DXYS147 587.4
DXYS93 599.7
DXYS152 653.9 9.7/754 13-fold
DXYS151 653.9
DXYS228 707.7
MIC2 707.7 2831 2550 54.0
DXYS77 735.2 1.3/50 26-fold
PA-boundary 2881 2600 55.3

a Markers used to define the genetic map intervals are shown in bold.
b Transformation of X-ray breakage to physical distance performed with the TNG

panel (1% breakage = 3.6 Kb).
c Physical distance in kb, according to PFGE (Petit et al. 1988; Rappold et al. 1992;

Slim et al. 1993b).
d Sperm-typing multipoint estimates of the recombination fraction, made with the

Kosambi map function.
e Recombination per unit of physical distance, compared to the genome-average rate

of 1 cM/1,000 kb.

donor C has a recombination fraction 70-fold higher
than the genome average in this interval. The develop-
ment of additional markers in this region could allow
identification of the hyperrecombinogenic interval at a
higher resolution.

Sperm-Typing Methodology

Finally, single sperm cells were obtained by suspending
the sperm in low-melting-point agarose and picking
sperm manually under an inverted phase microscope

(Lien et al. 1993). The method has been shown to be
highly accurate (Lien et al. 1993; Klungland et al. 1997;
Simianer et al. 1997; Lien et al. 1999), as confirmed for
human sperm in this study by a negligible frequency of
more than one sperm per tube and a very low nonspecific
contamination rate. As a consequence, recombination
fractions estimated by a sperm-typing version of the
MENDEL program were almost identical to estimates
from 2-point linkage analysis without taking specific er-
rors in the sperm-typing approach into account. Because
of the cost of the equipment and the technical difficulties
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of FACS sorting for single-sperm isolation, use of the
agarose gel procedure should be considered for experi-
ments involving moderate sample sizes.
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